环 (代数)
环()是由任意集合 R 和定义于其上的两种二元运算(记作「」和「」,常被简称为加法和乘法,但与一般所说的實數加法和乘法不同)所构成的,符合一些性质(具体见下)的代数结构。
环论 |
---|
环的定義类似于交换群,只不过在原来「+」的基础上又增添另一种运算「⋅」(注意我们这里所说的「+」與「⋅」一般不是我们所熟知的四则运算加法和乘法)。在抽象代数中,研究环的分支为环论。
定义
為集合, 和 為定義於其上的二元運算(一種二變數函數)。以下依照二元運算的慣例,將運算結果 和 分別簡記為 和 。
被稱為環,若它滿足:
- 為交換群 ,即:
- 結合律:對所有的 有
- 單位元:存在 ,對所有的 有 (可由上面的性質證明這樣的 是唯一的, 這樣的 稱為加法單位元)
- 反元素:對所有的 存在 使 (可以由上面的性質證明這樣的 是唯一的,通常簡記為 並稱為 的加法反元素)
- 交換律:對所有的 有
- 為半群,即:
- 結合律:對所有的 有
- 乘法對于加法满足分配律,即對所有的 有:
其中 常會被暱稱為加法;類似的 會被暱稱為乘法,因為取 (實數系), 為普通的實數加法且 為普通的實數乘法的話,顯然為環。而此時加法單位元顯然為實數 ,所以有時會偷懶的將一般環的加法單位元 簡寫為 。
所以慣例上仿造實數乘法把 簡寫為 ;而且因為實數乘法優先於實數加法,所以也會規定 是 的簡寫。此外還會仿造實數減法,會把 簡寫為 。
定義的分歧
在1960年代以前,多數抽象代数的書籍並不將乘法單位元列入環的定義;有些不要求乘法單位元的作者,會將包含乘法單位元的環稱為「單位環」;反之,有些要求乘法單位元的作者,會將不含乘法單位元的環稱為「偽環」。
基本性质
為環,則對所有 有:
I.
證明:
- (單位元)
- (式1等號兩邊於左側同乘 )
- (分配律)
- (式2, 式3)
- (式4等號兩邊於右側加 )
- (以反元素化簡式5)
可調換 和 的順序, 仿上證明 。
II.
證明:
- (加法交換律、分配律、加法逆元素)
- (上面的性質I)
故 的確是 的加法反元素,仿上可證明 也是 的加法反元素。
环的相关概念
例子
- 集环:非空集的集合构成一个环,当且仅当它满足以下几个条件中任何一个:
- 对集合的并和差运算封闭,即:∀E,F∈R ⇒ E∪F∈R,E-F∈R;
- 对集合的交和对称差运算封闭,即:∀E,F∈R ⇒ E∩F∈R,E△F∈R;
- 对集合的交,差以及无交并运算封闭。
- 这样得到的集环以交为乘法,对称差为加法;以空集为零元,并且由于∀E∈R,E∩E=E·E=E,因此它还是布尔环。
环的理想
考虑环,依环的定义知是阿贝尔群。集合,考虑以下条件:
- 构成的子群。
- ,有。
- ,有。
若满足条件1、2则称是的右理想;若满足条件1、3则称是的左理想;若满足条件1、2、3,即既是的右理想,也是的左理想,则称为的双边理想,简称理想。
示例
- 整数环的理想:整数环只有形如的理想。
基本性质
- 在环中,(左/右/双边)理想的和与交仍然是(左/右/双边)理想。
- 在除环中,(左/右)理想只有平凡(左/右)理想。
- 对于环R的两个理想、,记。则由定义易知:
- 若是的左理想,则是的左理想;
- 若是的右理想,则是的右理想;
- 若是的左理想,是的右理想,则是的双边理想。
相关概念
- 真(左/右/双边)理想
- 若的(左/右/双边)理想I满足:是的真子集,称为的真(左/右/双边)理想。
- 极大(左/右/双边)理想
- 环及其真(左/右/双边)理想,称为的极大(左/右/双边)理想,若不存在的真(左/右/双边)理想,使得是的真子集。
- 若是极大(左/右)理想,又是双边理想,则是极大理想。
- 极大双边理想不一定是极大(左/右)理想。
- 生成理想
- 环,,定义,则易知:
- 是环的理想,并且是中所有包含子集的理想的交,即是中包含子集的最小理想。
- 若为由子集生成的理想,称为的生成元集。当是有限集时,称为的有限生成理想。
- 下面是生成理想的几种特殊情况:
- 当是交换环时,
- 当是幺环时,
- 当是交换幺环时,
- 同一个理想,其生成元集可能不唯一。
- 下面是生成理想的几种特殊情况:
- 主理想
- 由环中单个元素生成的理想称为的主理想。即,设,则称为的主理想。
- 素理想
- 真理想被称为的素理想,若理想,则或。
- 素环
- 若环的零理想是素理想,则称是素环或质环。无零因子环是素环。在交换环中,真理想是素理想的充分且必要条件是:是素环.
- 半素理想
- 环的真理想,若理想,,则称是环的半素理想。
- 半素理想是一类比素理想相对较弱条件的理想,因为素理想是半素理想,但半素理想未必是素理想。
有关环的其它概念
- 零因子 (zero divisor):
- 设是环中的非零元素,如果,称为左零因子;类似地可以定义右零因子。左零因子和右零因子通称零因子。
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.