𨭆

𨭆108Hs
氫(非金屬) 氦(惰性氣體)
鋰(鹼金屬) 鈹(鹼土金屬) 硼(類金屬) 碳(非金屬) 氮(非金屬) 氧(非金屬) 氟(鹵素) 氖(惰性氣體)
鈉(鹼金屬) 鎂(鹼土金屬) 鋁(貧金屬) 矽(類金屬) 磷(非金屬) 硫(非金屬) 氯(鹵素) 氬(惰性氣體)
鉀(鹼金屬) 鈣(鹼土金屬) 鈧(過渡金屬) 鈦(過渡金屬) 釩(過渡金屬) 鉻(過渡金屬) 錳(過渡金屬) 鐵(過渡金屬) 鈷(過渡金屬) 鎳(過渡金屬) 銅(過渡金屬) 鋅(過渡金屬) 鎵(貧金屬) 鍺(類金屬) 砷(類金屬) 硒(非金屬) 溴(鹵素) 氪(惰性氣體)
銣(鹼金屬) 鍶(鹼土金屬) 釔(過渡金屬) 鋯(過渡金屬) 鈮(過渡金屬) 鉬(過渡金屬) 鎝(過渡金屬) 釕(過渡金屬) 銠(過渡金屬) 鈀(過渡金屬) 銀(過渡金屬) 鎘(過渡金屬) 銦(貧金屬) 錫(貧金屬) 銻(類金屬) 碲(類金屬) 碘(鹵素) 氙(惰性氣體)
銫(鹼金屬) 鋇(鹼土金屬) 鑭(鑭系元素) 鈰(鑭系元素) 鐠(鑭系元素) 釹(鑭系元素) 鉕(鑭系元素) 釤(鑭系元素) 銪(鑭系元素) 釓(鑭系元素) 鋱(鑭系元素) 鏑(鑭系元素) 鈥(鑭系元素) 鉺(鑭系元素) 銩(鑭系元素) 鐿(鑭系元素) 鎦(鑭系元素) 鉿(過渡金屬) 鉭(過渡金屬) 鎢(過渡金屬) 錸(過渡金屬) 鋨(過渡金屬) 銥(過渡金屬) 鉑(過渡金屬) 金(過渡金屬) 汞(過渡金屬) 鉈(貧金屬) 鉛(貧金屬) 鉍(貧金屬) 釙(貧金屬) 砈(類金屬) 氡(惰性氣體)
鍅(鹼金屬) 鐳(鹼土金屬) 錒(錒系元素) 釷(錒系元素) 鏷(錒系元素) 鈾(錒系元素) 錼(錒系元素) 鈽(錒系元素) 鋂(錒系元素) 鋦(錒系元素) 鉳(錒系元素) 鉲(錒系元素) 鑀(錒系元素) 鐨(錒系元素) 鍆(錒系元素) 鍩(錒系元素) 鐒(錒系元素) 鑪(過渡金屬) 𨧀(過渡金屬) 𨭎(過渡金屬) 𨨏(過渡金屬) 𨭆(過渡金屬) 䥑(預測為過渡金屬) 鐽(預測為過渡金屬) 錀(預測為過渡金屬) 鎶(過渡金屬) 鉨(預測為貧金屬) 鈇(貧金屬) 鏌(預測為貧金屬) 鉝(預測為貧金屬) 鿬(預測為鹵素) 鿫(預測為惰性氣體)


𨭆

(Upo)
𨨏𨭆
外觀
銀白色(預測)[1]
概況
名稱·符號·序數𨭆(Hassium)·Hs·108
元素類別過渡金屬
·週期·8·7·d
標準原子質量[269]
电子排布[] 5f14 6d6 7s2
(預測[2]
2, 8, 18, 32, 32, 14, 2(預測)
𨭆的电子層(2, 8, 18, 32, 32, 14, 2(預測))
𨭆的电子層(2, 8, 18, 32, 32, 14, 2(預測))
歷史
發現重離子研究所(1984年)
物理性質
物態固態(預測)
密度(接近室温
41(預測)[2] g·cm−3
原子性質
氧化态8, 6, 5, 4, 3, 2(預測)[1][2][3]
(實驗證實的氧化態以粗體顯示)
电离能第一:733.3(估值)[2] kJ·mol−1

第二:1756.0(估值)[2] kJ·mol−1
第三:2827.0(估值)[2] kJ·mol−1

更多
原子半径126(估值)[2] pm
共价半径134(估值)[4] pm
雜項
CAS号54037-57-9
同位素
主条目:𨭆的同位素
同位素 丰度 半衰期t1/2 衰變
方式 能量MeV 產物
269Hs 人造 15  α 9.27? 265Sg
270Hs 人造 9  α 9.07 266Sg
271Hs 人造 10 ? α 9.46? 267Sg

𨭆英語:),是一種人工合成化學元素,其化學符號Hs原子序數为108。𨭆是一種放射性極強的超重元素錒系後元素,其所有同位素半衰期都很短,非常不穩定,其中壽命最長的是269Hs,半衰期僅約16秒。德國黑森邦達姆施塔特重離子研究所的研究團隊在1984年首次合成出𨭆元素,並以黑森邦命名此元素。到目前為止,多個研究通過不同的核反應,一共合成了超過100個𨭆原子,有的是母原子核,有的是更重元素的衰變產物

𨭆是8族中最重的元素,實驗證明,𨭆是典型的8族過渡金屬,具穩定的+8氧化態,能形成揮發性四氧化物,類似於同族的

概论

超重元素的合成

外部
video icon 基于澳大利亚国立大学的计算,核聚变未成功的可视化[5]

超重元素[lower-alpha 1]原子核是在两个不同大小的原子核[lower-alpha 2]的聚变中产生的。粗略地说,两个原子核的质量之差越大,两者就越有可能发生反应。[11]由较重原子核组成的物质会作為靶子,被较轻原子核的粒子束轰击。两个原子核只能在距离足够近的时候,才能聚变成一个原子核。原子核都带正电荷,会因为静电排斥力而相互排斥,所以只有两个原子核的距离足够短时,强核力才能克服这个排斥力并发生聚变。粒子束因此被粒子加速器大大加速,以使这种排斥力与粒子束的速度相比变得微不足道。[12]施加到粒子束上以加速它们的能量可以使它们的速度达到光速的十分之一。但是,如果施加太多能量,粒子束可能会分崩离析。[12]

不过,只是靠得足够近不足以使两个原子核聚变:当两个原子核逼近彼此时,它们通常会融為一體约10−20秒,之後再分開(分開後的原子核不需要和先前相撞的原子核相同),而非形成单一的原子核。[12][13]这是因为在尝试形成单个原子核的过程中,静电排斥力会撕开正在形成的原子核。[12]每一对目标和粒子束的特征在于其截面,即两个原子核彼此接近时发生聚变的概率。[lower-alpha 3]这种聚变是量子效应的结果,其中原子核可以通过静电排斥隧穿。如果两个原子核可以在该阶段之后保持靠近,则多个核相互作用会导致能量的重新分配和平衡。[12]

两个原子核聚变产生的原子核处于非常不稳定,[12]被称为复合原子核激发态[15]复合原子核为了达到更稳定的状态,可能会直接裂变[16]或是放出一些中子来带走激发能量。如果激发能量太小,无法放出中子,复合原子核就会放出γ射线来带走激发能量。这个过程会在原子核碰撞后的10−16秒发生,并创造出更稳定的原子核。[16]原子核只有在10−14秒内不衰变IUPAC/IUPAP联合工作小组才会认为它是化学元素。这个值大约是原子核得到它的外层电子,显示其化学性质所需的时间。[17][lower-alpha 4]

衰变和探测

粒子束穿过目标后,会到达下一个腔室——分离室。如果反应产生了新的原子核,它就会被这个粒子束携带。[19]在分离室中,新的原子核会从其它核素(原本的粒子束和其它反应产物)中分离,[lower-alpha 5]到达半导体探测器后停止。这时标记撞击探测器的确切位置、能量和到达时间。[19]这个转移需要10−6秒的时间,因此原子核需要存在这么长的时间才能被检测到。[22]若衰变發生,衰變的原子核被再次记录,并测量位置、衰变能量和衰变时间。[19]

原子核的稳定性源自于强核力,但强核力的作用距离很短,随着原子核越来越大,强核力对最外层的核子质子和中子)的影响减弱。同时,原子核会被质子之间,范围不受限制的静电排斥力撕裂。[23]强核力提供的核结合能以线性增长,而静电排斥力则以原子序数的平方增长。后者增长更快,对重元素和超重元素而言变得越来越重要。[24][25]超重元素理论预测[26]及实际观测到[27]的主要衰变方式,即α衰变自发裂变都是这种排斥引起的。[lower-alpha 6]几乎所有会α衰变的核素都有超过210个核子,[29]而主要通过自发裂变衰变的最轻核素有238个核子。[27]有限位势垒在这两种衰变方式中抑制了原子核衰变,但原子核可以隧穿这个势垒,发生衰变。[24][25]

Apparatus for creation of superheavy elements
基于在杜布纳联合原子核研究所中设置的杜布纳充气反冲分离器,用于产生超重元素的装置方案。在检测器和光束聚焦装置内的轨迹会因为前者的磁偶极和后者的四极磁体而改变。[30]

放射性衰变中常产生α粒子是因为α粒子中的核子平均质量足够小,足以使α粒子有多余能量离开原子核。[31]自发裂变则是由静电排斥力将原子核撕裂而致,会产生各种不同的产物。[25]随着原子序数增加,自发裂变迅速变得重要:自发裂变的部分半衰期从92号元素到102号元素下降了23个数量级,[32]从90号元素到100号元素下降了30个数量级。[33]早期的液滴模型因此表明有约280个核子的原子核的裂变势垒会消失,因此自发裂变会立即发生。[25][34]之后的核壳层模型表明有大约300个核子的原子核将形成一个稳定岛,其中的原子核不易发生自发裂变,而是会发生半衰期更长的α衰变。[25][34]随后的发现表明预测存在的稳定岛可能比原先预期的更远,还发现长寿命锕系元素和稳定岛之间的原子核发生变形,获得额外的稳定性。[35]对较轻的超重核素[36]以及那些更接近稳定岛的核素[32]的实验发现它们比先前预期的更难发生自发裂变,表明核壳层效应变得重要。[lower-alpha 7]

α衰变由发射出去的α粒子记录,在原子核衰变之前就能确定衰变产物。如果α衰变或连续的α衰变产生了已知的原子核,则可以很容易地确定反应的原始产物。[lower-alpha 8]因为连续的α衰变都会在同一个地方发生,所以通过确定衰变发生的位置,可以确定衰变彼此相关。[19]已知的原子核可以通过它经历的衰变的特定特征来识别,例如衰变能量(或更具体地说,发射粒子的动能)。[lower-alpha 9]然而,自发裂变会产生各种分裂产物,因此无法从其分裂产物确定原始核素。[lower-alpha 10]

嘗試合成超重元素的物理学家可以获得的信息是探测器收集到的信息,即原子核到达探测器的位置、能量、时间以及它衰变的信息。他们分析这些数据并试图得出结论,確認它确实是由新元素引起的。如果提供的数据不足以得出创造出来的核素确实是新元素的结论,且对观察到的现象没有其他解释,就可能在解释数据时出现错误。[lower-alpha 11]

歷史

發現

1984年,由彼得·安布鲁斯特哥特佛萊德·明岑貝格領導的研究隊於德國達姆施塔特重離子研究所首次進行了𨭆的合成反應。團隊以58Fe原子核撞擊目標體,製造出3個265Hs原子,反應如下:

IUPAC/IUPAP超鐨元素工作組在1992年的一份報告中承認,重離子研究所是𨭆的正式發現者。[47]

命名

𨭆曾經被稱為eka。在命名爭議期間,IUPAC使用的臨時系統名稱是Unniloctium(符號為Uno),來自數字1、0、8的拉丁語寫法。

德國發現者在1992年正式提出使用Hassium作為108號元素的名稱,取自研究所所在地德國黑森州拉丁語名(Hassia)。

1994年,IUPAC的一個委員會建議把元素108命名為Hahnium(Hn),[48]雖然長期的慣例是把命名權留給發現者。在德國發現者抗議之後,1997年8月27日IUPAC正式對國際上分歧較大的101至109號元素的重新英文定名中,國際承認了現用名稱Hassium作為108號元素的命名。[49]

全國科學技術名詞化學名詞審定委員會據此於1998年7月8日重新审定、公佈101至109號元素的中文命名,其中首次給出108號元素中文名:「𨭆」(hēi,音同「黑」)[50],名稱根據IUPAC決定的英文名Hassium,源自發現該元素的德國重離子研究所所在的德國黑森州。[51][52]

核合成

冷核聚變

136Xe(136Xe,xn)272−xHs

未來重要的實驗將會包括通過該對稱反應利用裂變碎片合成𨭆同位素。這條反應曾於2007在杜布納進行,但未探測到任何原子,截面限制為1 pb[53]一經證實,這種對稱聚變反應就應該算是熱核聚變,而非一開始認為的冷核聚變。這意味著,該反應用於合成超重元素的實際用途具有限制。

198Pt(70Zn,xn)268−xHs

該反應於2002年5月在重離子研究所進行。不過,由於鋅-70粒子束的失敗,實驗被中斷了。

208Pb(58Fe,xn)266−xHs (x=1,2)

1978年位於杜布納的團隊首次報告了該反應。在1984年的一次實驗中,他們利用滾筒技術探測到了來自260Sg的一次自發裂變行為,而264Hs是其母同位素。[54]同年進行的重復實驗中,他們用化學辨識衰變產物,從而證明了元素108的成功合成。所探測到的有253Es和253Fm的α衰變,這些都是265Hs的衰變產物。

在1984年正式發現𨭆元素的實驗中,重離子研究所的團隊使用了α衰變相關法,並辨認出3顆265Hs原子。[55]在1993年改進設施之後,團隊在1994年重復進行了實驗,並在測量1n中子蒸發通道的部分激發函數時,探測到75個265Hs原子和2個264Hs原子。[56]在1997年進行的另一次實驗中,測量到的1n通道的最大值為69 pb,另探測到20個原子。[57]

理化學研究所於2002年的重復實驗成功製造出10個原子,而國家大型重離子加速器於2003年製造出7個原子。

理化學院究所的團隊於2008年再次研究該反應,以對264Hs作出首次的光譜分析。他們另又發現29個265Hs原子。

207Pb(58Fe,xn)265−xHs (x=1)

1984年在杜布納進行的實驗首次使用Pb-207目標。團隊探測到與使用Pb-208時的實驗相同的自發裂變,來自同位素260Sg,264Hs的子同位素。[47]位於重離子研究所的團隊首次於1986年研究這條反應,並使用α衰變相關法發現了單個264Hs原子,截面為3.2 pb。[58]反應在1994年重復進行,同時探測到α衰變自發裂變264Hs。

理化學研究所在2008年研究了該反應,以進行首次對264Hs的光譜分析。該團隊探測到11個原子。

208Pb(56Fe,xn)264−xHs (x=1)

勞倫斯伯克利國家實驗室的團隊在2008年首次研究該反應,並製造及辨認出6個新發現的263Hs同位素原子。[59]數月之後,理化學研究所的團隊也發佈了他們對同一條反應的研究結果。[60]

206Pb(58Fe,xn)264−xHs (x=1)

理化學研究所的團隊在2008年首次研究了該反應,並識別出8個新發現的263Hs同位素原子。[61]

209Bi(55Mn,xn)264−xHs

最初對𨭆原子核的合成實驗使用的就是這條反應,由杜布納的一支團隊在1983年進行。他們使用滾筒技術,探測到來自255Rf的自發裂變,而該同位素是263Hs的衰變產物。1984年重復進行的實驗得到同樣的結果。[47]1983年的另一次實驗當中,他們通過化學辨識衰變產物,從而支持𨭆的合成結果。探測到的有鐨同位素的α衰變,該鐨同位素是262Hs的衰變產物。這條反應之後一直沒有進行嘗試,因此262Hs的存在至今仍未證實。[47]

熱核聚變

226Ra(48Ca,xn)274−xHs (x=4)

位於Flerov核反應實驗室由Yuri Oganessian領導的團隊聲稱在1978年曾研究過這條反應,但實驗結果沒有發佈在任何文獻當中。[47]該反應於2008年6月在同一實驗室重復進行,結果探測到4個270Hs同位素原子,產量為9 pb。該同位素的衰變數據得到証實後,發現α能量稍微更高。[62]2009年1月,團隊重復進行實驗,再探測到2個270Hs原子。

232Th(40Ar,xn)272−xHs

這條反應首次再1987年於杜布納進行。探測方式為自發裂變,但並未發現任何成功地反應,截面限制為2 pb。[47]

238U(36S,xn)274−xHs (x=4)

該反應使用罕見且昂貴的36S同位素,於2008年4月至5月在重離子研究所進行。初步結果顯示,實驗探測到1個270Hs原子,產量為0.8 pb。數據証實了270Hs和266Sg的衰變特性。[63]

238U(34S,xn)272−xHs (x=4,5)

1994年3月,位於杜布納由Yuri Lazerev領導的團隊宣佈在5n中子蒸發通道探測到3個267Hs原子。[64]在重離子研究所的團隊在同時研究的時候証實了𨭆同位素的衰變特性。

這項實驗於2009年1月至2月在重離子研究所進行,用以發現新同位素268Hs。由Nishio教授領導的團隊探測到1個268Hs和1個267Hs原子。新發現的同位素經過α衰變後形成已知的264Sg同位素。

248Cm(26Mg,xn)274−xHs (x=3,4,5)

重離子研究所與保羅謝爾研究所的合作團隊研究了-248和-26離子之間的反應。在2001年5月到2005年8月期間,團隊研究了產生269Hs、270Hs及271Hs的3n、4n及5n中子蒸發通道的激發函數。[65][66]2006年12月,慕尼黑工業大學的科學團隊發佈了合成270Hs同位素的重要結果。[67]報告指出,該同位素經α衰變,能量為8.83 MeV,預計半衰期約為22秒,形成266Sg。

248Cm(25Mg,xn)273−xHs

這條新的反應在2006年7月至8月由重離子研究所用於合成新的同位素268Hs。從中子蒸發通道未能探測到任何原子,計算的界面限制為1 pb。

249Cf(22Ne,xn)271−xHs

杜布納的團隊在1983年研究了該反應,並用自發裂變作出探測。探測到的幾次短期自發裂變活動證明了𨭆原子核的生成。[47]

同位素

𬭶的同位素列表
同位素 半衰期[lower-alpha 12] 衰变方式 发现年份[27] 发现方法[68][lower-alpha 13]
数值 来源
263Hs 900 μs[27] α 2009年 208Pb(56Fe,n)
264Hs 700 ms[27] α, SF 1986年 207Pb(58Fe,n)
265Hs 1.96 ms[27] α 1984年 208Pb(58Fe,n)
265mHs 360 μs[27] α 1995年 208Pb(58Fe,n)
266Hs 3.0 ms[27] α, SF 2001年 270Ds(—,α)
266mHs 280 ms[27] α 2011年 270mDs(—,α)
267Hs 55 ms[27] α 1995年 238U(34S,5n)
267mHs 990 μs[27] α 2004年 238U(34S,5n)
268Hs 1.4 s[27] α 2010年 238U(34S,4n)
269Hs 15 s[27] α 1996年 277Cn(—,2α)
270Hs 9 s[27] α 2003年 248Cm(26Mg,4n)
271Hs ~12 s[69] α 2008年 248Cm(26Mg,3n)
272Hs 160 ms[70] α 2022年 276Ds(—,α)
273Hs 510 ms[71] α 2010年 285Fl(—,3α)
275Hs 600 ms[72] α 2004年 287Fl(—,3α)
277Hs 18 ms[73] SF 2010年 289Fl(—,3α)
277mHs 130 s[lower-alpha 14][27] SF 2012年 293mLv(—,4α)

目前已知的𨭆同位素有12個,全部都具有極高的放射性半衰期極短,非常不穩定。其中壽命最長的是𨭆-269,半衰期約15秒。

待證實的同位素

277bHs

同位素277Hs曾在一次自發裂變事件中被觀察到,其半衰期為較長的11分鐘左右。[74]281Ds的大部分衰變過程中都未能探測到該同位素,其唯一一次被探測到是在同質異構核281bDs的未經証實的一次衰變當中。其半衰期對基態核來說很長,因此它有可能屬於277Hs的一個同質異構核。另外在2009年,重離子研究所的團隊觀察到281aDs的α衰變分鏈產生了277Hs同位素,其後該同位素進行自發裂變,半衰期較短。測量到的半衰期接近基態同質異構核277aHs的預期值。要證實該同質異構核的存在,需進行進一步的研究。

撤回的同位素

273Hs

勞倫斯伯克利國家實驗室於1999年聲稱合成元素118,反應期間出現273Hs同位素核子。他們聲稱該同位素以能量9.78及9.47 MeV進行α衰變,半衰期為1.2秒。該發現在2001年被撤回。這一同位素最終在2010年被合成,而所記錄的數據證明先前的數據是虛假的。

270Hs

根據宏觀微觀理論,Z=108質子數是變形質子幻數,連同N=162的中子殼層。這代表這種原子核的基態是永遠變形的,但其裂變位壘高而窄,造成進一步變形,因此其自發裂變部分半衰期相對較長。此區域的自發裂變半衰期比接近球體雙重幻數的原子核298114小大約109倍。這是由於裂變位壘較窄,導致以量子隧穿效應穿越位壘的機率增加。另外,根據計算,N=162中子數是變形中子幻數,因此270Hs原子核很有可能是變形雙重幻數核。Z=110的同位素271Ds及273Ds的衰變數據,說明N=162支殼層有可能為幻數。對269Hs、270Hs和271Hs的合成實驗也指出N=162是幻數閉殼層。270Hs的低衰變能量與計算的完全相符。[75]

Z=108變形質子殼層的證據

證明Z=108質子殼層的幻數特性的證據有以下兩點:

  1. 同中子異位素自發裂變的部分半衰期變化。
  2. Z=108和Z=110同中子異位素對Qα值間的大差距。

對於自發裂變,有必要測量同中子異位素核268Sg、270Hs和272Ds的半衰期。由於的這兩個同位素還是未知的,而270Hs的衰變還未經過測量,因此該方法目前能夠用來證實Z=108殼層的穩定性質。但Z=108的幻數特性可以從270Hs、271Ds及273Ds的α衰變能量間的大差距中推導出。測量272Ds的衰變能量能量後能夠得出更有力的證據。

同質異能核

269Hs

269Hs的直接合成產生了三條α線,於9.21、9.10及8.94 MeV。在277112的衰變當中,只觀察到能量為9.21 MeV的269Hs的α衰變,表示該衰變源自同質異能核。要證實這一點則需進一步研究。

267Hs

已知267Hs進行α衰變,α線位於9.88、9.83和9.75 MeV,半衰期為52 ms。在合成271m,gDs的時候,觀察到額外的活動。包括一次0.94 ms,能量為9.83 MeV的α衰變,其餘還有更長的約0.8 s和約6.0 s的活動。這些活動來源現時不清,需要更多的研究得到證實。

265Hs

265Hs的合成也證明兩個能級的存在。基態進行能量為10.30 MeV的α衰變,半衰期為2.0 ms。其同質異能態能量比基態高300 keV,進行10.57 MeV的α衰變,半衰期為0.75 ms。

化學特性

氧化態

𨭆預計為過渡金屬中6d系的第5個元素及8族中最重的元素,在週期表中位於之下。該族中的後兩個元素表現出的氧化態為+8,而這種氧化態在族中越到下方越為穩定。因此𨭆的氧化態應為+8。鋨同時還有穩定的+5、+4及+3態,其中+4態最為穩定。而釕則同時有+6、+5及+3態,當中+3態最為穩定。𨭆也因此預計擁有穩定的低氧化態。

化合物

第8族元素獨特的氧化物化學使對𨭆元素特性的推算更為容易。同族較輕的元素都已知擁有或預測擁有四氧化物,MO4。一直向下,該族的氧化力逐漸下降:FeO4[76]並不存在,因為極高的電子親合能使其形成常見的FeO42−。釕(VI)在中經過氧化後形成四氧化釕,RuO4,而四氧化釕經過還原反應後形成RuO42−。釕金屬在空氣中氧化後形成二氧化釕,RuO2。對比之下,鋨燃燒後產生穩定的四氧化鋨,OsO4,然後與氫氧根離子產生配合物[OsO4(OH)2]2−。因此,作為鋨對下的元素,𨭆應該會形成揮發性四氧化𨭆,HsO4,再與氫氧根離子配合形成[HsO4(OH)2]2−

密度

𨭆預計體積密度為41 g/cm3,是所有118個已知元素中最高的,幾乎為的兩倍,而鋨是目前已測量的元素中密度最高的,有22.6 g/cm3。這是由於𨭆擁有高原子量,並加上鑭系與錒系收縮效應和相對論性效應,但是真正製造足夠𨭆元素以測量其密度是不可行的,因為樣本會即刻進行衰變。[77]

氣態化學

𨭆的電子排佈預計為[Rn]5f14 6d6 7s2,因此𨭆應會產生揮發性四氧化物HsO4。其揮發性是由於該分子的四面體形。

對𨭆的首次化學實驗在2001年進行,運用了熱色譜分析法,以172Os作為參照物。利用反應248Cm(26Mg,5n)269Hs,實驗探測到5個𨭆原子。產生的原子在He/O2混合物中經過熱能化及氧化後產生氧化物。

269
108
Hs
+ 2 O
2
269
108
Hs
O
4

所測量到的熱離解溫度表示四氧化𨭆的揮發性比四氧化鋨低,同時也肯定了𨭆的特性屬於8族。[78][79]

為了進一步探測𨭆的化學屬性,科學家決定研究四氧化𨭆與氫氧化鈉間產生的𨭆酸鈉的反應。該反應是鋨的一條常見反應。在2004 年,科學家公佈成功進行了第一次對𨭆化合物的酸鹼反應: [80]

HsO
4
+ 2 NaOH → Na
2
[HsO
4
(OH)
2
]

化合物與絡離子

公式名稱
HsO4四氧化𨭆
Na
2
[HsO
4
(OH)
2
]
𨭆酸鈉、二羥基四氧𨭆酸鈉

注释

  1. 核物理学中,原子序高的元素可称为重元素,如82号元素。超重元素通常指原子序大于103(也有大于100[6]或112[7]的定义)的元素。有定义认为超重元素等同于锕系后元素,因此认为还未发现的超锕系元素不是超重元素。[8]
  2. 2009年,由尤里·奥加涅相引领的团队发表了他们尝试通过对称的136Xe + 136Xe反应合成𬭶的结果。他们未能在这个反应中观察到单个原子,因此设置截面,即发生核反应的概率的上限为2.5 pb[9]作为比较,发现𬭶的反应208Pb + 58Fe的截面为19+19
    -11
     pb。[10]
  3. 施加到粒子束以加速它的能量也会影响截面。举个例子,在28
    14
    Si
    + 1
    0
    n
    28
    13
    Al
    + 1
    1
    p
    反应中,截面会从12.3 MeV的370 mb变化成18.3 MeV的160 mb,最高值是13.5 MeV的380 mb。[14]
  4. 这个值也是普遍接受的复合原子核寿命上限。[18]
  5. 分离基于产生的原子核会比未反应的粒子束更慢地通过目标这一点。分离器中包含电场和磁场,它们对运动粒子的影响会因粒子的特定速度而被抵消。[20]飞行时间质谱法和反冲能量的测量也有助于分离,两者结合可以估计原子核的质量。[21]
  6. 不是所有放射性衰变都是因为静电排斥力导致的,β衰变便是弱核力导致的。[28]
  7. 早在1960年代,人们就已经知道原子核的基态在能量和形状上的不同,也知道核子数为幻数时,原子核就会更稳定。然而,当时人们假设超重元素的原子核因为过于畸形,无法形成核子结构。[32]
  8. 超重元素的原子核的质量通常无法直接测量,所以是根据另一个原子核的质量间接计算得出的。[37]2018年,劳伦斯伯克利国家实验室首次直接测量了超重原子核的质量,[38]它的质量是根据转移后原子核的位置确定的(位置有助于确定其轨迹,这与原子核的质荷比有关,因为转移是在有磁铁的情况下完成的)。[39]
  9. 如果在真空中发生衰变,那么由于孤立系统在衰变前后的总动量必须保持守恒,衰变产物也将获得很小的速度。这两个速度的比值以及相应的动能比值与两个质量的比值成反比。衰变能量等于α粒子和衰变产物的已知动能之和。[29]这些计算也适用于实验,但不同之处在于原子核在衰变后不会移动,因为它与探测器相连。
  10. 自发裂变是由苏联科学家格奥尔基·弗廖罗夫发现的,[40]而他也是杜布纳联合原子核研究所的科学家,所以自发裂变就成了杜布纳联合原子核研究所经常讨论的课题。[41]劳伦斯伯克利国家实验室的科学家认为自发裂变的信息不足以声称合成元素,他们认为对自发裂变的研究还不够充分,无法将其用于识别新元素,因为很难确定复合原子核是不是仅喷射中子,而不是质子或α粒子等带电粒子。[18]因此,他们更喜欢通过连续的α衰变将新的同位素与已知的同位素联系起来。[40]
  11. 举个例子,1957年,瑞典斯德哥尔摩省斯德哥尔摩的诺贝尔物理研究所错误鉴定102号元素。[42]早先没有关于该元素发现的明确声明,所以瑞典、美国、英国发现者将其命名为nobelium。后来证明该鉴定是错误的。[43]次年,劳伦斯伯克利国家实验室无法重现瑞典的结果。他们宣布合成了该元素,但后来也被驳回。[43]杜布纳联合原子核研究所坚持认为他们第一个发现该元素,并建议把新元素命名为joliotium,[44]而这个名称也没有被接受(他们后来认为102号元素的命名是仓促的)。[45]由于nobelium这个名称在三十年间已被广泛使用,因此没有更名。[46]
  12. 不同的来源会给出不同的数值,所以这里列出最新的数值。
  13. 208Pb(56Fe,n)263Hs这一写法指的是用56Fe轰击208Pb,二者融合之后放出一粒中子,产生263Hs。此反应也可以写成208Pb + 56Fe → 263Hs + n
  14. 至今只观测到一次衰变

參考資料

  1. Emsley, John. New. New York, NY: Oxford University Press. 2011: 215–7. ISBN 978-0-19-960563-7.
  2. Haire, Richard G. . Morss; Edelstein, Norman M.; Fuger, Jean (编). 3rd. Dordrecht, The Netherlands: Springer Science+Business Media. 2006. ISBN 1-4020-3555-1.
  3. Investigation of group 8 metallocenes @ TASCA页面存档备份,存于), C.E. Dullman
  4. Chemical Data. Hassium - Hs页面存档备份,存于), Royal Chemical Society
  5. Wakhle, A.; Simenel, C.; Hinde, D. J.; et al. Simenel, C.; Gomes, P. R. S.; Hinde, D. J.; et al , 编. . European Physical Journal Web of Conferences. 2015, 86: 00061. ISSN 2100-014X. doi:10.1051/epjconf/20158600061可免费查阅.
  6. Krämer, K. . Chemistry World. 2016 [2020-03-15]. (原始内容存档于2021-05-15) (英语).
  7. . Lawrence Livermore National Laboratory. [2020-03-15]. (原始内容存档于2015-09-11).
  8. Eliav, E.; Kaldor, U.; Borschevsky, A. . Scott, R. A. (编). . John Wiley & Sons: 1–16. 2018. ISBN 978-1-119-95143-8. doi:10.1002/9781119951438.eibc2632 (英语).
  9. Oganessian, Yu. Ts.; Dmitriev, S. N.; Yeremin, A. V.; et al. . Physical Review C. 2009, 79 (2): 024608. ISSN 0556-2813. doi:10.1103/PhysRevC.79.024608 (英语).
  10. Münzenberg, G.; Armbruster, P.; Folger, H.; et al. (PDF). Zeitschrift für Physik A. 1984, 317 (2): 235–236 [20 October 2012]. Bibcode:1984ZPhyA.317..235M. doi:10.1007/BF01421260. (原始内容 (PDF)存档于7 June 2015).
  11. Subramanian, S. . Bloomberg Businessweek. [2020-01-18]. (原始内容存档于2019-12-11).
  12. Ivanov, D. [Superheavy steps into the unknown]. nplus1.ru. 2019 [2020-02-02]. (原始内容存档于2020-04-23) (俄语).
  13. Hinde, D. . The Conversation. 2017 [2020-01-30]. (原始内容存档于2020-03-17) (英语).
  14. Kern, B. D.; Thompson, W. E.; Ferguson, J. M. . Nuclear Physics. 1959, 10: 226–234. doi:10.1016/0029-5582(59)90211-1 (英语).
  15. (PDF): 7–8. [2020-01-27]. (原始内容存档 (PDF)于2020-11-30). Published as Loveland, W. D.; Morrissey, D. J.; Seaborg, G. T. . . John Wiley & Sons, Inc. 2005: 249–297. ISBN 978-0-471-76862-3. doi:10.1002/0471768626.ch10 (英语).
  16. Krása, A. . Faculty of Nuclear Sciences and Physical Engineering (Czech Technical University in Prague). 2010: 4–8. S2CID 28796927.
  17. Wapstra, A. H. (PDF). Pure and Applied Chemistry. 1991, 63 (6): 883 [2021-11-28]. ISSN 1365-3075. doi:10.1351/pac199163060879. (原始内容存档 (PDF)于2021-10-11) (英语).
  18. Hyde, E. K.; Hoffman, D. C.; Keller, O. L. . Radiochimica Acta. 1987, 42 (2): 67–68 [2021-11-27]. ISSN 2193-3405. doi:10.1524/ract.1987.42.2.57. (原始内容存档于2021-11-27).
  19. Chemistry World. . Scientific American. 2016 [2020-01-27]. (原始内容存档于2020-04-21) (英语).
  20. Hoffman, Ghiorso & Seaborg 2000,第334頁.
  21. Hoffman, Ghiorso & Seaborg 2000,第335頁.
  22. Zagrebaev, V.; Karpov, A.; Greiner, W. . Journal of Physics: Conference Series. 2013, 420: 3. ISSN 1742-6588. doi:10.1088/1742-6596/420/1/012001可免费查阅.
  23. Beiser 2003,第432頁.
  24. Pauli, N. (PDF). Introductory Nuclear, Atomic and Molecular Physics (Nuclear Physics Part). Université libre de Bruxelles. 2019 [2020-02-16]. (原始内容存档 (PDF)于2021-11-28).
  25. Pauli, N. (PDF). Introductory Nuclear, Atomic and Molecular Physics (Nuclear Physics Part). Université libre de Bruxelles. 2019 [2020-02-16]. (原始内容存档 (PDF)于2021-10-21).
  26. Staszczak, A.; Baran, A.; Nazarewicz, W. . Physical Review C. 2013, 87 (2): 024320–1. ISSN 0556-2813. doi:10.1103/physrevc.87.024320可免费查阅.
  27. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (PDF). Chinese Physics C. 2021, 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  28. Beiser 2003,第439頁.
  29. Beiser 2003,第433頁.
  30. Aksenov, N. V.; Steinegger, P.; Abdullin, F. Sh.; et al. . The European Physical Journal A. 2017, 53 (7): 158. ISSN 1434-6001. doi:10.1140/epja/i2017-12348-8 (英语).
  31. Beiser 2003,第432–433頁.
  32. Oganessian, Yu. . Journal of Physics: Conference Series. 2012, 337: 012005–1–012005–6. ISSN 1742-6596. doi:10.1088/1742-6596/337/1/012005可免费查阅.
  33. Moller, P.; Nix, J. R. (PDF). Dai 2 Kai Hadoron Tataikei no Simulation Symposium, Tokai-mura, Ibaraki, Japan. University of North Texas. 1994 [2020-02-16]. (原始内容存档 (PDF)于2021-11-01).
  34. Oganessian, Yu. Ts. . Physics World. 2004, 17 (7): 25–29 [2020-02-16]. doi:10.1088/2058-7058/17/7/31. (原始内容存档于2021-11-28).
  35. Schädel, M. . Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2015, 373 (2037): 20140191. ISSN 1364-503X. PMID 25666065. doi:10.1098/rsta.2014.0191可免费查阅 (英语).
  36. Hulet, E. K. . 50th Anniversary of Nuclear Fission, Leningrad, USSR. 1989. Bibcode:1989nufi.rept...16H.
  37. Oganessian, Yu. Ts.; Rykaczewski, K. P. . Physics Today. 2015, 68 (8): 32–38 [2021-11-28]. ISSN 0031-9228. OSTI 1337838. doi:10.1063/PT.3.2880. (原始内容存档于2021-11-28) (英语).
  38. Grant, A. . Physics Today. 2018. doi:10.1063/PT.6.1.20181113a (英语).
  39. Howes, L. . Chemical & Engineering News. 2019 [2020-01-27]. (原始内容存档于2021-11-28) (英语).
  40. Robinson, A. E. . Distillations. 2019 [2020-02-22]. (原始内容存档于2021-11-28) (英语).
  41. [Popular library of chemical elements. Seaborgium (eka-tungsten)]. n-t.ru. [2020-01-07] (俄语). Reprinted from [Eka-tungsten]. [Popular library of chemical elements. Silver through nielsbohrium and beyond]. Nauka. 1977 (俄语).
  42. . Royal Society of Chemistry. [2020-03-01]. (原始内容存档于2021-03-08) (英语).
  43. Kragh 2018,第38–39頁.
  44. Kragh 2018,第40頁.
  45. Ghiorso, A.; Seaborg, G. T.; Oganessian, Yu. Ts.; et al. (PDF). Pure and Applied Chemistry. 1993, 65 (8): 1815–1824 [2016-09-07]. doi:10.1351/pac199365081815. (原始内容存档 (PDF)于2013-11-25) (英语).
  46. Commission on Nomenclature of Inorganic Chemistry. (PDF). Pure and Applied Chemistry. 1997, 69 (12): 2471–2474 [2021-11-28]. doi:10.1351/pac199769122471. (原始内容存档 (PDF)于2021-10-11) (英语).
  47. Barber, R. C.; Greenwood, N. N.; Hrynkiewicz, A. Z.; Jeannin, Y. P.; Lefort, M.; Sakai, M.; Ulehla, I.; Wapstra, A. P.; Wilkinson, D. H. . Pure and Applied Chemistry. 1993, 65 (8): 1757. doi:10.1351/pac199365081757.
  48. . Pure and Applied Chemistry. 1994, 66 (12): 2419. doi:10.1351/pac199466122419.
  49. . Pure and Applied Chemistry. 1997, 69 (12): 2471. doi:10.1351/pac199769122471.
  50. 中国化学会无机化学名词小组修订. . 1982-12: 4-5 [2020-11-10]. (原始内容存档于2021-09-22).
  51. 刘路沙. . 光明网. 光明日报. [2020-11-10]. (原始内容存档于2020-11-10).
  52. 贵州地勘局情报室摘于《中国地质矿产报》(1998年8月13日). . 貴州地質. 1998, 15: 298–298 [2020-11-10]. (原始内容存档于2020-12-03).
  53. (PDF). [2012-06-02]. (原始内容存档 (PDF)于2012-03-05).
  54. Oganessian, Yu Ts; Demin, A. G.; Hussonnois, M.; Tretyakova, S. P.; Kharitonov, Yu P.; Utyonkov, V. K.; Shirokovsky, I. V.; Constantinescu, O.; Bruchertseifer, H. . Zeitschrift für Physik A. 1984, 319 (2): 215. Bibcode:1984ZPhyA.319..215O. doi:10.1007/BF01415635.
  55. Münzenberg, G.; Armbruster, P.; Folger, H.; Heßberger, P. F.; Hofmann, S.; Keller, J.; Poppensieker, K.; Reisdorf, W.; Schmidt, K. -H. . Zeitschrift für Physik A. 1984, 317 (2): 235. Bibcode:1984ZPhyA.317..235M. doi:10.1007/BF01421260.
  56. Hofmann, S. . Reports on Progress in Physics. 1998, 61 (6): 639. Bibcode:1998RPPh...61..639H. doi:10.1088/0034-4885/61/6/002.
  57. Hofmann, S.; Heßberger, F.P.; Ninov, V.; Armbruster, P.; Münzenberg, G.; Stodel, C.; Popeko, A.G.; Yeremin, A.V.; Saro, S. . Zeitschrift für Physik A. 1997, 358 (4): 377. Bibcode:1997ZPhyA.358..377H. doi:10.1007/s002180050343.
  58. Münzenberg, G.; Armbruster, P.; Berthes, G.; Folger, H.; Heßerger, F. P.; Hofmann, S.; Poppensieker, K.; Reisdorf, W.; Quint, B. . Zeitschrift für Physik A. 1986, 324 (4): 489. Bibcode:1986ZPhyA.324..489M. doi:10.1007/BF01290935.
  59. Dragojević, I.; Gregorich, K.; Düllmann, Ch.; Dvorak, J.; Ellison, P.; Gates, J.; Nelson, S.; Stavsetra, L.; Nitsche, H. . Physical Review C. 2009, 79: 011602. Bibcode:2009PhRvC..79a1602D. doi:10.1103/PhysRevC.79.011602.
  60. Kaji, Daiya; Morimoto, Kouji; Sato, Nozomi; Ichikawa, Takatoshi; Ideguchi, Eiji; Ozeki, Kazutaka; Haba, Hiromitsu; Koura, Hiroyuki; Kudou, Yuki. . Journal of the Physical Society of Japan. 2009, 78 (3): 035003. Bibcode:2009JPSJ...78c5003K. doi:10.1143/JPSJ.78.035003.
  61. . [2012-06-02]. (原始内容存档于2011-09-27).
  62. (PDF). [2012-06-02]. (原始内容 (PDF)存档于2011-10-06).
  63. Observation of 270Hs in the complete fusion reaction 36S+238U* 页面存档备份,存于 R. Graeger et al., GSI Report 2008
  64. Lazarev, Yu. A.; Lobanov, YV; Oganessian, YT; Tsyganov, YS; Utyonkov, VK; Abdullin, FS; Iliev, S; Polyakov, AN; Rigol, J. . Physical Review Letters. 1995, 75 (10): 1903. Bibcode:1995PhRvL..75.1903L. PMID 10059158. doi:10.1103/PhysRevLett.75.1903.
  65. "Decay properties of 269Hs and evidence for the new nuclide 270Hs" 页面存档备份,存于, Turler et al., GSI Annual Report 2001. Retrieved on 2008-03-01
  66. (PDF). [2012-06-02]. (原始内容存档 (PDF)于2009-02-25).
  67. "Doubly magic 270Hs" 页面存档备份,存于, Turler et al., GSI report, 2006. Retrieved on 2008-03-01
  68. Thoennessen, M. . Springer. 2016: 229, 234, 238. ISBN 978-3-319-31761-8. LCCN 2016935977. doi:10.1007/978-3-319-31763-2.
  69. . Joint Institute for Nuclear Research. 27 February 2023 [29 March 2023].
  70. Oganessian, Yu. Ts.; Utyonkov, V. K.; Shumeiko, M. V.; et al. . Physical Review C. 2023, 108 (24611): 024611. Bibcode:2023PhRvC.108b4611O. S2CID 261170871. doi:10.1103/PhysRevC.108.024611.
  71. Utyonkov, V. K.; Brewer, N. T.; Oganessian, Yu. Ts.; et al. . Physical Review C. 30 January 2018, 97 (14320): 014320. Bibcode:2018PhRvC..97a4320U. doi:10.1103/PhysRevC.97.014320可免费查阅.
  72. Oganessian, Yu. Ts.; Utyonkov, V. K.; Ibadullayev, D.; et al. . Physical Review C. 2022, 106 (24612): 024612. Bibcode:2022PhRvC.106b4612O. S2CID 251759318. doi:10.1103/PhysRevC.106.024612.
  73. Cox, D. M.; Såmark-Roth, A.; Rudolph, D.; Sarmiento, L. G.; Clark, R. M.; Egido, J. L.; Golubev, P.; Heery, J.; Yakushev, A.; Åberg, S.; Albers, H. M.; Albertsson, M.; Block, M.; Brand, H.; Calverley, T.; Cantemir, R.; Carlsson, B. G.; Düllmann, Ch. E.; Eberth, J.; Fahlander, C.; Forsberg, U.; Gates, J. M.; Giacoppo, F.; Götz, M.; Götz, S.; Herzberg, R.-D.; Hrabar, Y.; Jäger, E.; Judson, D.; Khuyagbaatar, J.; Kindler, B.; Kojouharov, I.; Kratz, J. V.; Krier, J.; Kurz, N.; Lens, L.; Ljungberg, J.; Lommel, B.; Louko, J.; Meyer, C.-C.; Mistry, A.; Mokry, C.; Papadakis, P.; Parr, E.; Pore, J. L.; Ragnarsson, I.; Runke, J.; Schädel, M.; Schaffner, H.; Schausten, B.; Shaughnessy, D. A.; Thörle-Pospiech, P.; Trautmann, N.; Uusitalo, J. . Physical Review C. 6 February 2023, 107 (2): L021301. Bibcode:2023PhRvC.107b1301C. doi:10.1103/PhysRevC.107.L021301可免费查阅.
  74. Oganessian, Yu. Ts.; Utyonkov, V. K.; Lobanov, Yu. V.; Abdullin, F. Sh.; Polyakov, A. N.; Shirokovsky, I. V.; Tsyganov, Yu. S.; Gulbekian, G. G.; Bogomolov, S. L. . Physics of Atomic Nuclei. 2000, 63 (10): 1679–1687. Bibcode:2000PAN....63.1679O. doi:10.1134/1.1320137.
  75. Robert Smolanczuk. . Physical Review C. 1997, 56 (2): 812–824. Bibcode:1997PhRvC..56..812S. doi:10.1103/PhysRevC.56.812.
  76. Gutsev, Gennady L.; Khanna, S.; Rao, B.; Jena, P. . Physical Review A. 1999, 59 (5): 3681. Bibcode:1999PhRvA..59.3681G. doi:10.1103/PhysRevA.59.3681.
  77. Darleane C. Hoffman, Diana M. Lee, and Valeria Pershina Transactinide Elements and Future Elements 页面存档备份,存于, Ch. 14 in Lester R. Morss, Norman M. Edelstein, Jean Fuger (Eds.) The Chemistry of the Actinide and Transactinide Elements, Springer-Verlag, Dordrecht 2006, ISBN 978-1-4020-3555-5 p. 1691.
  78. (PDF). [2012-06-02]. (原始内容存档 (PDF)于2009-02-25).
  79. (PDF). Gesellschaft für Schwerionenforschung mbH. 2002 [2007-01-31]. (原始内容存档 (PDF)于2012-01-14).
  80. (PDF). [2012-06-02]. (原始内容存档 (PDF)于2008-05-28).

参考书目

  • Beiser, A. 6th. McGraw-Hill. 2003. ISBN 978-0-07-244848-1. OCLC 48965418.
  • Hoffman, D. C.; Ghiorso, A.; Seaborg, G. T. . World Scientific. 2000. ISBN 978-1-78-326244-1.
  • Kragh, H. . Springer. 2018. ISBN 978-3-319-75813-8.

外部連結

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.