BIRCH
BIRCH(英文全称:balanced iterative reducing and clustering using hierarchies,中文:利用层次方法的平衡迭代规约和聚类)[1]是一个非监督式分层聚类算法,于1996年由 Tian Zhang 提出。算法的优势在于能够利用有限的内存资源完成对大数据集的高质量的聚类。[2]该算法通过构建聚类特征树(Clustering Feature Tree,简称CF Tree),在接下来的聚类过程中,直接对聚类特征进行聚类,而无需对原始数据集进行聚类。[3]因此在多数情况下只需要扫描一次数据库即可进行聚类,IO成本与数据集尺寸呈线性关系。[4]
机器学习与 |
---|
参考资料
- 樊仲欣;王兴;苗春生;. . 计算机应用. 2018: 6 [2018-12-09]. (原始内容存档于2019-02-15).
- . blog.csdn.net. [2018-12-09]. (原始内容存档于2019-02-15).
- 朱, 映辉; 江, 玉珍. . 计算机工程与设计. 2007, (18): 4345–4346+4369 [2018-12-11]. ISSN 1000-7024. doi:10.16208/j.issn1000-7024.2007.18.014. (原始内容存档于2019-02-15).
- . www.cnblogs.com. [2018-12-09]. (原始内容存档于2018-12-24) (中文(中国大陆)).
- . blog.csdn.net. [2018-12-09]. (原始内容存档于2019-02-15).
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.