Truncated pentahexagonal tiling
Truncated pentahexagonal tiling
Poincaré disk model of the hyperbolic plane
TypeHyperbolic uniform tiling
Vertex configuration4.10.12
Schläfli symboltr{6,5} or
Wythoff symbol2 6 5 |
Coxeter diagram
Symmetry group[6,5], (*652)
DualOrder 5-6 kisrhombille
PropertiesVertex-transitive

In geometry, the truncated tetrahexagonal tiling is a semiregular tiling of the hyperbolic plane. There are one square, one decagon, and one dodecagon on each vertex. It has Schläfli symbol of t0,1,2{6,5}. Its name is somewhat misleading: literal geometric truncation of pentahexagonal tiling produces rectangles instead of squares.

Dual tiling

The dual tiling is called an order-5-6 kisrhombille tiling, made as a complete bisection of the order-5 hexagonal tiling, here with triangles shown in alternating colors. This tiling represents the fundamental triangular domains of [6,5] (*652) symmetry.

Symmetry

There are four small index subgroup from [6,5] by mirror removal and alternation. In these images fundamental domains are alternately colored black and white, and mirrors exist on the boundaries between colors.

Small index subgroups of [6,5], (*652)
Index 1 2 6
Diagram
Coxeter
(orbifold)
[6,5] =
(*652)
[1+,6,5] = =
(*553)
[6,5+] =
(5*3)
[6,5*] =
(*33333)
Direct subgroups
Index 2 4 12
Diagram
Coxeter
(orbifold)
[6,5]+ =
(652)
[6,5+]+ = =
(553)
[6,5*]+ =
(33333)

From a Wythoff construction there are fourteen hyperbolic uniform tilings that can be based from the regular order-5 hexagonal tiling.

Drawing the tiles colored as red on the original faces, yellow at the original vertices, and blue along the original edges, there are 7 forms with full [6,5] symmetry, and 3 with subsymmetry.

Uniform hexagonal/pentagonal tilings
Symmetry: [6,5], (*652) [6,5]+, (652) [6,5+], (5*3) [1+,6,5], (*553)
{6,5} t{6,5} r{6,5} 2t{6,5}=t{5,6} 2r{6,5}={5,6} rr{6,5} tr{6,5} sr{6,5} s{5,6} h{6,5}
Uniform duals
V65 V5.12.12 V5.6.5.6 V6.10.10 V56 V4.5.4.6 V4.10.12 V3.3.5.3.6 V3.3.3.5.3.5 V(3.5)5

See also

References

  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
  • "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.