Snub triapeirogonal tiling
Snub triapeirogonal tiling
Poincaré disk model of the hyperbolic plane
TypeHyperbolic uniform tiling
Vertex configuration3.3.3.3.
Schläfli symbolsr{,3} or
Wythoff symbol| 3 2
Coxeter diagram or
Symmetry group[,3]+, (32)
DualOrder-3-infinite floret pentagonal tiling
PropertiesVertex-transitive Chiral

In geometry, the snub triapeirogonal tiling is a uniform tiling of the hyperbolic plane with a Schläfli symbol of sr{∞,3}.

Images

Drawn in chiral pairs, with edges missing between black triangles:

The dual tiling:

This hyperbolic tiling is topologically related as a part of sequence of uniform snub polyhedra with vertex configurations (3.3.3.3.n), and [n,3] Coxeter group symmetry.

n32 symmetry mutations of snub tilings: 3.3.3.3.n
Symmetry
n32
Spherical Euclidean Compact hyperbolic Paracomp.
232 332 432 532 632 732 832 32
Snub
figures
Config. 3.3.3.3.2 3.3.3.3.3 3.3.3.3.4 3.3.3.3.5 3.3.3.3.6 3.3.3.3.7 3.3.3.3.8 3.3.3.3.
Gyro
figures
Config. V3.3.3.3.2 V3.3.3.3.3 V3.3.3.3.4 V3.3.3.3.5 V3.3.3.3.6 V3.3.3.3.7 V3.3.3.3.8 V3.3.3.3.
Paracompact uniform tilings in [,3] family
Symmetry: [,3], (*32) [,3]+
(32)
[1+,,3]
(*33)
[,3+]
(3*)

=

=

=
=
or
=
or

=
{,3} t{,3} r{,3} t{3,} {3,} rr{,3} tr{,3} sr{,3} h{,3} h2{,3} s{3,}
Uniform duals
V3 V3.. V(3.)2 V6.6. V3 V4.3.4. V4.6. V3.3.3.3. V(3.)3 V3.3.3.3.3.

See also

References

    • John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
    • "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.


    This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.