Rhombitriapeirogonal tiling
Rhombitriapeirogonal tiling
Poincaré disk model of the hyperbolic plane
TypeHyperbolic uniform tiling
Vertex configuration3.4..4
Schläfli symbolrr{,3} or
s2{3,}
Wythoff symbol3 | 2
Coxeter diagram or
Symmetry group[,3], (*32)
[,3+], (3*)
DualDeltoidal triapeirogonal tiling
PropertiesVertex-transitive

In geometry, the rhombtriapeirogonal tiling is a uniform tiling of the hyperbolic plane with a Schläfli symbol of rr{∞,3}.

Symmetry

This tiling has [∞,3], (*∞32) symmetry. There is only one uniform coloring.

Similar to the Euclidean rhombitrihexagonal tiling, by edge-coloring there is a half symmetry form (3*∞) orbifold notation. The apeireogons can be considered as truncated, t{∞} with two types of edges. It has Coxeter diagram , Schläfli symbol s2{3,∞}. The squares can be distorted into isosceles trapezoids. In the limit, where the rectangles degenerate into edges, an infinite-order triangular tiling results, constructed as a snub triapeirotrigonal tiling, .

Paracompact uniform tilings in [,3] family
Symmetry: [,3], (*32) [,3]+
(32)
[1+,,3]
(*33)
[,3+]
(3*)

=

=

=
=
or
=
or

=
{,3} t{,3} r{,3} t{3,} {3,} rr{,3} tr{,3} sr{,3} h{,3} h2{,3} s{3,}
Uniform duals
V3 V3.. V(3.)2 V6.6. V3 V4.3.4. V4.6. V3.3.3.3. V(3.)3 V3.3.3.3.3.

Symmetry mutations

This hyperbolic tiling is topologically related as a part of sequence of uniform cantellated polyhedra with vertex configurations (3.4.n.4), and [n,3] Coxeter group symmetry.

*n32 symmetry mutation of expanded tilings: 3.4.n.4
Symmetry
*n32
[n,3]
Spherical Euclid. Compact hyperb. Paraco. Noncompact hyperbolic
*232
[2,3]
*332
[3,3]
*432
[4,3]
*532
[5,3]
*632
[6,3]
*732
[7,3]
*832
[8,3]...
*32
[,3]
 
[12i,3]
 
[9i,3]
 
[6i,3]
Figure
Config. 3.4.2.4 3.4.3.4 3.4.4.4 3.4.5.4 3.4.6.4 3.4.7.4 3.4.8.4 3.4..4 3.4.12i.4 3.4.9i.4 3.4.6i.4

See also

References

    • John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
    • "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.
    This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.