Snub triapeirotrigonal tiling
Snub triapeirotrigonal tiling
Poincaré disk model of the hyperbolic plane
TypeHyperbolic uniform tiling
Vertex configuration3.3.3.3.3.
Schläfli symbols{3,}
s(,3,3)
Wythoff symbol| 3 3
Coxeter diagram
Symmetry group[(,3,3)]+, (33)
DualOrder-i-3-3_t0 dual tiling
PropertiesVertex-transitive Chiral

In geometry, the snub triapeirotrigonal tiling is a uniform tiling of the hyperbolic plane with a Schläfli symbol of s{3,∞}.

Paracompact hyperbolic uniform tilings in [(,3,3)] family
Symmetry: [(,3,3)], (*33) [(,3,3)]+, (33)
(,,3) t0,1(,3,3) t1(,3,3) t1,2(,3,3) t2(,3,3) t0,2(,3,3) t0,1,2(,3,3) s(,3,3)
Dual tilings
V(3.)3 V3..3. V(3.)3 V3.6..6 V(3.3) V3.6..6 V6.6. V3.3.3.3.3.

References

  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
  • "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.

See also


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.