期望值
在概率论和统计学中,一个离散性随机变量的期望值(或数学期望,亦简称期望,物理学中称为期待值)是试验中每次可能的结果乘以其结果概率的总和。换句话说,期望值像是随机试验在同样的机会下重复多次,所有那些可能狀態平均的结果,便基本上等同“期望值”所期望的數。期望值可能与每一个结果都不相等。换句话说,期望值是该变量输出值的加权平均。期望值并不一定包含于其分布值域,也并不一定等于值域平均值。
统计学系列条目 |
論 |
---|
例如,掷一枚公平的六面骰子,其每次「點數」的期望值是3.5,计算如下:
不過如上所說明的,3.5雖是「點數」的期望值,但卻不属于可能结果中的任一个,沒有可能擲出此點數。
数学定义
并不是每一个随机变量都有期望值的,因为有的时候上述积分不存在。
如果两个随机变量的分布相同,则它们的期望值也相同。
如果是离散的随机变量,输出值为,和输出值相应的概率为(概率和为1)。
若级数绝对收敛,那么期望值是一个无限数列的和。
如果是连续的随机变量,存在一个相应的概率密度函数,若积分绝对收敛,那么的期望值可以计算为:
- 。
是针对于连续的随机变量的,与离散随机变量的期望值的算法同出一辙,由于输出值是连续的,所以把求和改成了积分。
性质
期望值的运用
在统计学中,估算变量的期望值时,经常用到的方法是重复测量此变量的值,再用所得数据的平均值来估计此变量的期望值。
在古典力学中,物体重心的算法与期望值的算法十分近似。
在賭博中,期望值又稱預期值、長期效果值、合理價值、期待值,都能完全貼和,而其計算的方式為:
- (期望值)勝的概率獲勝的籌碼輸的概率輸掉的籌碼
期望值也可以通过方差计算公式来计算方差:
(平方期望值減的期望值平方)
其他写法
在机器学习领域的文章中,常常在期望算子的下标中指定服从的分布。例如:随机变量的函数的期望常常写成这样:
是的概率密度函数。
參考文獻
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.