在计算三角形的面积时,你需要知道三角形的高。如果三角形的高不是已知信息,那么需要你根据已知条件求出这个三角形的高。根据不同的已知条件,本文将展示多种不同的求解三角形高度的方法,让我们一起来学习吧!

方法 1
方法 1 的 3:

已知面积和底边长求高

  1. 三角形的面积公式是A=1/2bh[1]
    • A = 三角形的面积
    • b = 三角形底边长
    • h = 三角形底边的高
  2. 在本例中,你已经知道了面积,可以将面积的数值代入公式中的A。你也已知底边长的大小,可以将数值代入公式中的"'b'"。如果你不知道面积或底边长,那么你只能尝试其它的方法了。
    • 无论三角形是如何绘制的,三角形的任意一边都可以作为底边。为了更形象地展示它,你可以想象把三角形进行旋转,直到已知边长位于底部。
    • 例如,如果已知三角形面积是20,一边长为4,那么带入得A = 20b = 4
  3. 首先将底边长(b)乘以1/2,然后用面积(A)除以它。运算得到的结果应该就是三角形的高!
    • 本例中:20 = 1/2(4)h
    • 20 = 2h
    • 10 = h
    广告
方法 2
方法 2 的 3:

求等边三角形的高

  1. 等边三角形有三条相等大小的侧边,每个夹角都是60度。如果你将等边三角形分成两半,就会得到两个相同的直角三角形。[2]
    • 在本例中,我们使用边长为8的等边三角形。
  2. 勾股定理将两个直角边描述为ab、斜边为ca2 + b2 = c2。我们可以使用这个定理求出等边三角形的高![3]
  3. 斜边c等于原始的斜边长。直角边a的长度就变成了边长的1/2,直角边b就是所求的三角形的高。
    • 以边长为8的等边三角形为例,其中c = 8a = 4
  4. 边长ca分别乘以自身求平方值。 然后用c2减去a2
    • 42 + b2 = 82
    • 16 + b2 = 64
    • b2 = 48
  5. 得到的结果就是等边三角形的高!
    • b = Sqrt (48) = 6.93
    广告
方法 3
方法 3 的 3:

已知边长和角求高

  1. 如果你知道三角形的一个夹角和一条边长,如果这个角是底边和已知侧边的夹角,或是已知三条边长,你就能求出三角形的高。我们将三角形的三边称之为a、b和c,三角为A、B和C。
    • 如果你已知三角形的三边边长,可以使用海伦公式来求出三角形的高。
    • 如果你已知两条边长和一个角,可以使用面积公式A = 1/2ab(sin C)来求解。[4]
  2. 海伦公式分为两部分。首先,你必须求解出变量 s,它等于三角形周长的一半。你可以使用这个公式:s = (a+b+c)/2 求出。[5]
    • 例如,三角形三边长为 a = 4、b = 3和c = 5,故而s = (4+3+5)/2,也就是s = (12)/2。求出s = 6。
    • 然后使用海伦公式的第二部分。面积 = sqr(s(s-a)(s-b)(s-c)。 再将面积代入含有高的面积公式:1/2bh (或 1/2ah 、1/2ch)。
    • 计算求出高。在本例中,就是1/2(3)h = sqr(6(6-4)(6-3)(6-5)。化简得3/2h = sqr(6(2)(3)(1),也就是3/2h = sqr(36)。使用计算器计算开方,得到3/2h = 6。因此,使用边长b作为底边,得出,三角形的高等于4。
  3. 用三角形面积公式1/2bh来代替上述公式中的面积。公式就变成了1/2bh = 1/2ab(sin C),化简得到h = a(sin C),这样可以消除一条未知边长的变量。[6]
    • 根据已知变量来求解等式。例如,已知a = 3、C = 40度,代入公式得“h = 3(sin 40)。使用计算器来计算等式,得到高h约等于1.928。
    广告

关于本wikiHow

wikiHow是一个“多人协作写作系统”,因此我们的很多文章都是由多位作者共同创作的。 为了创作这篇文章,26位用户(部分匿名)多次对文章进行了编辑和改进。 这篇文章已经被读过390,521次。
分类: 教育与交流
广告