三角化四面體

幾何學中,三角化四面體(英語:triakis tetrahedronkistetrahedron[2])是一種卡塔蘭多面體,其為截角正四面體對偶多面體[3]

三角化四面體
三角化四面體
()
類別卡塔蘭立體
對偶多面體截角正四面體
識別
鮑爾斯縮寫
tikit在维基数据编辑
數學表示法
考克斯特符號
node_f1 3 node_f1 3 node 
性質
12
18
頂點8
歐拉特徵數F=12, E=18, V=8 (χ=2)
二面角129° 31' 16"
組成與佈局
面的種類等腰三角形
面的佈局
V3.6.6
頂點圖4{3}+4{6}
對稱性
對稱群Td, A3, [3,3], *332
旋轉對稱群
T, [3,3]+, 332
特性
凸、face-transitive
圖像

截角正四面體
對偶多面體

展開圖

礦物學中,這種形狀又稱為三四面體[4](英語:tristetrahedron[5][6])。

性質

三角化四面體的旋轉透視圖。

三角化四面體是一種卡塔蘭立體,由12個面、18條邊和8個頂點組成[7]對偶多面體是一個阿基米德立體——截角四面體[7][3]。由於其對偶多面體具有點可遞的性質,因此三角化四面體擁有面可遞的性質,即所有面皆全等。三角化四面體由12個全等的等腰三角形組成,其頂點有兩種:一種為3個等腰三角形的公共頂點,另一種為6個等腰三角形的公共頂點。

三角化四面體可以看做是在正四面體每個面上加上錐高為倍邊長的三角錐後所形成的形狀[8],可以視為正三角形三邊各加一個等腰三角形拼成的正六邊形立體幾何中的推廣。

面的組成

三角化四面體的面由12個全等等腰三角形組成[9],三角形的邊長比為3:3:5[10][9]

組成三角化四面體的等腰三角形,其頂角為約為112.89°、底角為約為33.56°。

體積與表面積

一個最短邊長為單位長的三角化四面體,它的表面積體積[8]

另一方面,也可以從其對偶多面體來計算體積。若其對偶多面體——截角四面體邊長為a,可以先得出三角化四面體的邊長:

短邊為個單位長[10][8]
長邊為3a個單位長[10][8]
半周長為,透過海倫公式可求得一個面的面積:
[註 1]

則體積V與表面積A[10]

二面角

三角化四面體的二面角有2種結構,一種是等腰三角形長邊與長邊的二面角,另一種是短邊與短邊的二面角。兩個二面角角度皆相同,其值為負十一分之七的反餘弦[10]

[10]

正交投影

三角化四面體有4個特殊的正交投影,分別為於稜上投影(兩種)、於面上投影和於面與頂點上投影。

正交投影
投影位置 於稜上投影 於面上投影 於面與頂點上投影 於稜上投影(交叉)
三角化
四面體
(對偶)
截角
四面體
投影
對稱性
[1] [1] [3] [4]

相關多面體與鑲嵌

球面鑲嵌版本的三角化四面體

三角化四面體是正四面體經過三角化變換後的結果,其他也是由正四面體透過康威變換得到的多面體有:

正四面体家族半正多面体
对称性: [3,3], (*332) [3,3]+, (332)
node_1 3 node 3 node  node_1 3 node_1 3 node  node 3 node_1 3 node  node 3 node_1 3 node_1  node 3 node 3 node_1  node_1 3 node 3 node_1  node_1 3 node_1 3 node_1  node_h 3 node_h 3 node_h 
{3,3} t0,1{3,3} t1{3,3} t1,2{3,3} t2{3,3} t0,2{3,3} t0,1,2{3,3} s{3,3}
半正多面体对偶
node_f1 3 node 3 node  node_f1 3 node_f1 3 node  node 3 node_f1 3 node  node 3 node_f1 3 node_f1  node 3 node 3 node_f1  node_f1 3 node 3 node_f1  node_f1 3 node_f1 3 node_f1  node_fh 3 node_fh 3 node_fh 
V3.3.3 V3.6.6 V3.3.3.3 V3.6.6 V3.3.3 V3.4.3.4 V4.6.6 V3.3.3.3.3

三角化四面體是由等腰三角形組成,且對偶多面體由正六邊形正三角形交錯組成。同樣由等腰三角形組成,且對偶多面體由正多邊形與正三角形交錯組成的多面體或鑲嵌圖包括:

*n32變異對稱性的截角鑲嵌: 3.2n.2n
對稱性
*n32
[n,3]
球面鑲嵌 歐氏鑲嵌 緊湊雙曲 非緊雙曲
*232
[2,3]
*332
[3,3]
*432
[4,3]
*532
[5,3]
*632
[6,3]
*732
[7,3]
*832
[8,3]...
*32
[,3]
截角鑲嵌
頂點 3.4.4 3.6.6 3.8.8 3.10.10 3.12.12 3.14.14 3.16.16 3..
三角化
鑲嵌
頂點 V3.4.4 V3.6.6 V3.8.8 V3.10.10 V3.12.12 V3.14.14 V3.16.16 V3.∞.∞

對偶複合體

複合截角四面體三角化四面體
三角化四面體
複合截角四面體三角化四面體
類別複合半正多面體
對偶多面體自身對偶
性質
2
20
36
頂點20
歐拉特徵數F=20, E=36, V=20 (χ=4)
組成與佈局
複合幾何體數量2
複合幾何體種類1個三角化四面體
1個截角四面體
面的種類12個等腰三角形
4個正三角形
4個正六邊形
對稱性
對稱群四面體群 (Td)

對偶複合體,即一個多面體與其對偶多面體組合成的複合圖形。三角化四面體與其對偶的複合體為複合截角四面體三角化四面體。其共有20個面、36條邊和20個頂點,其尤拉示性數為4,虧格為-1[11]

正交投影

以正六邊形面為中心

以正三角形面為中心
面的組成

複合截角四面體三角化四面體由4個正三角形、4個正六邊形和12個等腰三角形組成,其中組成的等腰三角形與三角化四面體完全相同,邊長比同為3:3:5,但有部分隱沒在截角四面體中,如下圖所示,露在該立體外部的部分,以藍色表示,隱沒在立體內部的部分以白色表示,其中黑線代表等腰三角形與其對偶多面體截角四面體相交的位置:

複合截角四面體三角化四面體中的截角四面體亦有部分隱沒在三角化四面體中,如下圖所示:


正六邊形面

正三角形面

對偶多面體


三角化四面體

對偶多面體:
截角四面體

三角化四面體的對偶多面體是一種由4個正三角形和4個正六邊形組成的多面體[12],有12個頂點和18條棱,可以想象為將正四面體的頂點切去,稱為截角四面體[7][3][8]

四半面體對稱性

三角化四面體可以看做是四半面體[13]對稱性退化的極限:

四半面體變體的範例
Tetartoid 0% (Regular Dodecahedron) Tetartoid 10% Tetartoid 20% Tetartoid 30%
Tetartoid 60% Tetartoid 80% Tetartoid 95% Tetartoid 100% (Triakis Tetrahedron)

其他變體

三角化四面體為正四面體每個面都加上適當高度的角錐所形成的幾何形狀[9]

而若加入的角錐為正三角錐(正四面體)則會產生正五胞体的展開圖:

而若加入的角錐為直角三角錐,則會使等腰三角形兩兩共面形成立方體。可以透過在立方體的面上畫上六個對角線看出此特性:

參見

註解

  1. 使用wolframalpha計算: 页面存档备份,存于

參考文獻

  1. Williams, Robert. . Dover Publications, Inc. 1979. ISBN 0-486-23729-X. (Section 3-9)
  2. Wenninger, Magnus, , Cambridge University Press, 1983, ISBN 978-0-521-54325-5, MR 0730208, doi:10.1017/CBO9780511569371 (The thirteen semiregular convex polyhedra and their duals, Page 14, Triakistetrahedron)
  1. The Symmetries of Things 2008, John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, ISBN 978-1-56881-220-5 (Chapter 21, Naming the Archimedean and Catalan polyhedra and tilings, page 284, Triakis tetrahedron)
  2. Conway, Symmetries of things[1], p.284
  3. Holden, A. Shapes, Space, and Symmetry. New York: Columbia University Press, p. 55, 1971., p. 55
  4. . 國家教育研究院. [2018-08-23]. (原始内容存档于2018-08-26).
  5. Correns, C. W. . Berlin: Springer-Verlag. 1949: p. 41.
  6. Berry, L. G. and Mason, B. Mineralogy: Concepts, Descriptions, Determinations. San Francisco, CA: W. H. Freeman, 1959., p. 127
  7. . bulatov.com. [2018-08-26]. (原始内容存档于2017-12-06).
  8. Weisstein, Eric W. (编). . at MathWorld--A Wolfram Web Resource. Wolfram Research, Inc. (英语).
  9. . rechneronline.de. [2018-08-26]. (原始内容存档于2017-10-02).
  10. . dmccooey.com. [2018-08-26]. (原始内容存档于2018-01-27).
  11. . bulatov.org. [2018-08-26]. (原始内容存档于2017-12-06).
  12. Weisstein, Eric W. (编). . at MathWorld--A Wolfram Web Resource. Wolfram Research, Inc. (英语).
  13. . 國家教育研究院. [2018-08-23]. (原始内容存档于2018-08-26).

外部連結

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.