Solar eclipse of April 7, 1940
Map
Type of eclipse
NatureAnnular
Gamma0.219
Magnitude0.9394
Maximum eclipse
Duration450 sec (7 m 30 s)
Coordinates19°12′N 128°30′W / 19.2°N 128.5°W / 19.2; -128.5
Max. width of band230 km (140 mi)
Times (UTC)
Greatest eclipse20:21:21
References
Saros128 (54 of 73)
Catalog # (SE5000)9375

An annular solar eclipse occurred on Sunday, April 7, 1940. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible from Gilbert and Ellice Islands (the part now belonging to Kiribati), Mexico and the United States.

Solar eclipses 1939–1942

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[1]

Solar eclipse series sets from 1939–1942
Descending node   Ascending node
SarosMap SarosMap
118April 19, 1939

Annular
123October 12, 1939

Total
128April 7, 1940

Annular
133October 1, 1940

Total
138March 27, 1941

Annular
143September 21, 1941

Total
148March 16, 1942

Partial
153September 10, 1942

Partial
The partial solar eclipse on August 12, 1942 occurs in the next lunar year eclipse set.

Saros 128

This eclipse is a member of the Solar Saros cycle 128, which includes 73 eclipses occurring in intervals of 18 years and 11 days. The series started with partial solar eclipse on August 29, 984 AD. From May 16, 1417 through June 18, 1471 the series produced total solar eclipses, followed by hybrid solar eclipses from June 28, 1489 through July 31, 1543, and annular solar eclipses from August 11, 1561 through July 25, 2120. The series ends at member 73 as a partial eclipse on November 1, 2282. All eclipses in this series occurs at the Moon’s descending node.

Series members 52–68 occur between 1901 and 2200
52 53 54

March 17, 1904

March 28, 1922

April 7, 1940
55 56 57

April 19, 1958

April 29, 1976

May 10, 1994
58 59 60

May 20, 2012

June 1, 2030

June 11, 2048
61 62 63

June 22, 2066

July 3, 2084

July 15, 2102
64 65 66

July 25, 2120
August 5, 2138 (Partial) August 16, 2156 (Partial)
67 68
August 27, 2174 (Partial) September 6, 2192 (Partial)

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days).

Notes

  1. van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.

References

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.