Solar eclipse of January 16, 2056
Map
Type of eclipse
NatureAnnular
Gamma0.4199
Magnitude0.9759
Maximum eclipse
Duration172 sec (2 m 52 s)
Coordinates3°54′N 153°30′W / 3.9°N 153.5°W / 3.9; -153.5
Max. width of band95 km (59 mi)
Times (UTC)
Greatest eclipse22:16:45
References
Saros132 (48 of 71)
Catalog # (SE5000)9632

An annular solar eclipse will occur on January 16, 2056. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

Solar eclipses 2054–2058

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[1]

Solar eclipse series sets from 2054-58
Ascending node   Descending node
Saros Map Saros Map
117August 3, 2054

Partial
122January 27, 2055

Partial
127July 24, 2055

Total
132January 16, 2056

Annular
137July 12, 2056

Annular
142January 5, 2057

Total
147July 1, 2057

Annular
152December 26, 2057

Total
157June 21, 2058

Partial

Saros 132

This eclipse is a part of Saros cycle 132, repeating every 18 years, 11 days, containing 71 events. The series started with partial solar eclipse on August 13, 1208. It contains annular eclipses from March 17, 1569 through March 12, 2146, hybrid on March 23, 2164 and April 3, 2183 and total eclipses from April 14, 2200 through June 19, 2308. The series ends at member 71 as a partial eclipse on September 25, 2470. The longest duration of annular was 6 minutes, 56 seconds on May 9, 1641, and totality will be 2 minutes, 14 seconds on June 8, 2290. All eclipses in this series occurs at the Moon’s descending node.

Series members 28–50 occur between 1690 and 2100:
28 29 30

June 11, 1695

June 22, 1713

July 4, 1731
31 32 33

July 14, 1749

July 25, 1767

August 5, 1785
34 35 36

August 17, 1803

August 27, 1821

September 7, 1839
37 38 39

September 18, 1857

September 29, 1875

October 9, 1893
40 41 42

October 22, 1911

November 1, 1929

November 12, 1947
43 44 45

November 23, 1965

December 4, 1983

December 14, 2001
46 47 48

December 26, 2019

January 5, 2038

January 16, 2056
49 50

January 27, 2074

February 7, 2092

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Metonic cycle

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days).

References

  1. van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.