Solar eclipse of December 26, 2019
Annularity as seen from Jaffna, Sri Lanka
Map
Type of eclipse
NatureAnnular
Gamma0.4135
Magnitude0.9701
Maximum eclipse
Duration220 sec (3 m 40 s)
Coordinates1°00′N 102°18′E / 1°N 102.3°E / 1; 102.3
Max. width of band118 km (73 mi)
Times (UTC)
Greatest eclipse5:18:53
References
Saros132 (46 of 71)
Catalog # (SE5000)9552

An annular solar eclipse occurred at the Moon’s descending node of the orbit on Thursday, December 26, 2019.[1][2][3][4] A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.[5]

The annularity was visible in Saudi Arabia, Qatar, Kuwait, United Arab Emirates, Oman, Pakistan, Sri Lanka, Bangladesh, Malaysia, Indonesia, Singapore, Northern Mariana Islands, and Guam.

Details

Eclipse Magnitude0.97010
Eclipse Obscuration0.94110
Gamma0.41351
Saros series132 (46 of 71)
Greatest Eclipse26 Dec 2019 05:17:43.6 UTC
Ecliptic Conjunction26 Dec 2019 05:13:07.5 UTC
Equatorial Conjunction26 Dec 2019 05:14:34.3 UTC
CoordinateSunMoon
Right Ascension18.318.3
Declination-23.4-23
Diameter (arcseconds)1951.41866.0
Contact EventTime UTC
First Penumbral External Contact02:29:51.3
First Umbral External Contact03:34:32.2
First Central Line03:36:04.1
First Umbral Internal Contact03:37:36.3
First Penumbral Internal Contact05:01:26.1
Greatest Eclipse05:17:43.6
Last Penumbral Internal Contact05:34:04.7
Last Umbral Internal Contact06:57:50.7
Last Central Line06:59:25.9
Last Umbral External Contact07:01:00.9
Last Penumbral External Contact08:05:43.9

Visibility and viewing

Animated path

It was the last solar eclipse of 2019. The central path of the 2019 annular eclipse passed through the Saudi Arabian peninsula, southern India, Sumatra, Borneo, Philippines and Guam. A partial eclipse was visible thousands of kilometers wide from the central path. It covered small parts of Eastern Europe, much of Asia, North and West Australia, Eastern Africa, the Pacific Ocean and the Indian Ocean.[5][6] The eclipse started with an antumbra having a magnitude of 0.96; it stretched 164 kilometers wide, and traveled eastwards at an average rate of 1.1 kilometers per second. The longest duration of annularity was 3 minutes and 40 seconds, at 5.30 UT1 occurring in the South China Sea (0°45'54.0"N 105°29'06.0"E).[5]

Map showing the visibility of the Annular Solar Eclipse on December 26, 2019, in India.

The eclipse began in Saudi Arabia about 220 kilometers northeast of Riyadh at 03:43 UT1 and ended in Guam at 06:59.4 UT1. It reached India near Kannur, Kerala, at 03:56 UT1. The shadow reached the southeast coast of India at 04:04 UT1. Traveling through northern Sri Lanka, it headed into the Bay of Bengal. The next main visible places were Palau (Malaysia), Sumatra and Singapore. It then passed through the South China Sea, crossed Borneo and the Celebes Sea, the Philippines archipelago and then headed towards the western Pacific. The antumbral shadow encountered Guam at 6:56 UT1 and rose back into space.[5]

Eclipses of 2019

Astronomers Without Borders collected eclipse glasses for redistribution to Latin America and Asia for their 2019 eclipses from the Solar eclipse of August 21, 2017.[7]

Tzolkinex

Half-Saros cycle

Tritos

Solar Saros 132

Inex

Triad

Solar eclipses 2018–2021

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[8]

Note: Partial solar eclipses on February 15, 2018, and August 11, 2018, occurred during the previous semester series.

Solar eclipse series sets from 2018–2021
Ascending node   Descending node
Saros Map Gamma Saros Map Gamma
117

Partial from Melbourne, Australia
2018 July 13

Partial
−1.35423 122

Partial from Nakhodka, Russia
2019 January 6

Partial
1.14174
127

La Serena, Chile
2019 July 2

Total
−0.64656 132

Jaffna, Sri Lanka
2019 December 26

Annular
0.41351
137

Beigang, Yunlin, Taiwan
2020 June 21

Annular
0.12090 142

Gorbea, Chile
2020 December 14

Total
−0.29394
147

Partial from Halifax, Canada
2021 June 10

Annular
0.91516 152

From HMS Protector off South Georgia
2021 December 4

Total
−0.95261

Saros 132

This eclipse is a part of Saros cycle 132, repeating every 18 years, 11 days, containing 71 events. The series started with partial solar eclipse on August 13, 1208. It contains annular eclipses from March 17, 1569 through March 12, 2146, hybrid on March 23, 2164 and April 3, 2183 and total eclipses from April 14, 2200 through June 19, 2308. The series ends at member 71 as a partial eclipse on September 25, 2470. The longest duration of annular was 6 minutes, 56 seconds on May 9, 1641, and totality will be 2 minutes, 14 seconds on June 8, 2290. All eclipses in this series occurs at the Moon’s descending node.

Series members 28–50 occur between 1690 and 2100:
28 29 30

June 11, 1695

June 22, 1713

July 4, 1731
31 32 33

July 14, 1749

July 25, 1767

August 5, 1785
34 35 36

August 17, 1803

August 27, 1821

September 7, 1839
37 38 39

September 18, 1857

September 29, 1875

October 9, 1893
40 41 42

October 22, 1911

November 1, 1929

November 12, 1947
43 44 45

November 23, 1965

December 4, 1983

December 14, 2001
46 47 48

December 26, 2019

January 5, 2038

January 16, 2056
49 50

January 27, 2074

February 7, 2092

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.[9]

Octon series with 21 events between May 21, 1993 and August 2, 2065
May 20–21 March 8–9 December 25–26 October 13–14 August 1–2
98 100 102 104 106
May 21, 1955 March 9, 1959 December 26, 1962 October 14, 1966 August 2, 1970
108 110 112 114 116
May 21, 1974 March 9, 1978 December 26, 1981 October 14, 1985 August 1, 1989
118 120 122 124 126

May 21, 1993

March 9, 1997

December 25, 2000

October 14, 2004

August 1, 2008
128 130 132 134 136

May 20, 2012

March 9, 2016

December 26, 2019

October 14, 2023

August 2, 2027
138 140 142 144 146

May 21, 2031

March 9, 2035

December 26, 2038

October 14, 2042

August 2, 2046
148 150 152 154 156

May 20, 2050

March 9, 2054

December 26, 2057

October 13, 2061

August 2, 2065
158 160 162 164 166

May 20, 2069
March 8, 2073 December 26, 2076 October 13, 2080 August 1, 2084

Notes

  1. Malik, Tariq (December 26, 2019). "'Ring of Fire' Solar Eclipse Thrills Skywatchers Around the World (and in Space, Too!)". Space.com.
  2. "Solar eclipse creates 'ring of fire' in sky over parts of Asia Dec. 26". ABC7 Chicago. December 26, 2019.
  3. Chappell, Bill (December 26, 2019). "'Ring Of Fire' Eclipse Sweeps Across Skies In Middle East And Southeast Asia". NPR.com.
  4. "Egg-standing test goes viral as ring-of-fire eclipse crosses Asia". December 26, 2019 via www.reuters.com.
  5. 1 2 3 4 "EclipseWise - Eclipses During 2019". eclipsewise.com. Retrieved 2019-07-25.
  6. "Annular Solar Eclipse on December 26, 2019". www.timeanddate.com. Retrieved 2019-07-25.
  7. Cooper, Gael (2017-08-22). "Wait! Dig those eclipse glasses out of the garbage Here comes the sun. Astronomers Without Borders will be collecting the protective eyewear for use in future eclipses worldwide". Retrieved 2017-08-27.
  8. van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  9. Note S1: Eclipses & Predictions in Freeth, Tony (2014). "Eclipse Prediction on the Ancient Greek Astronomical Calculating Machine Known as the Antikythera Mechanism". PLOS ONE. 9 (7): e103275. Bibcode:2014PLoSO...9j3275F. doi:10.1371/journal.pone.0103275. PMC 4116162. PMID 25075747.

References

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.