四角化立方體

幾何學中,四角化立方體又稱為四角化六面體是一種卡塔蘭立體,其對偶多面體截角正八面體,由24個全等的等腰三角形組成,具有36條邊和14個頂點[1],可以視為在正方體的每個面上加入正四角錐的結果。此外四角化立方體亦可以視為正方形四邊各加一個等腰三角形拼成的正八邊形立體幾何中的推廣。

四角化立方體
四角化立方體
(按這裡觀看旋轉模型)
類別卡塔蘭立體
對偶多面體截角正八面體
識別
鮑爾斯縮寫
tekah在维基数据编辑
數學表示法
考克斯特符號
node_f1 3 node_f1 4 node 
node_f1 3 node_f1 3 node_f1 
康威表示法kC
dtO
性質
24
36
頂點14
歐拉特徵數F=24, E=36, V=14 (χ=2)
二面角143°07′48″
組成與佈局
面的種類V4.6.6

等腰三角形
面的佈局
6{4}+8{6}
頂點圖V4.6.6
對稱性
對稱群Oh, B3, [4,3], (*432)
旋轉對稱群
O, [4,3]+, (432)
特性
面可遞
圖像
立體圖
V4.6.6
頂點圖

截角正八面體
對偶多面體

展開圖

性質

四角化立方體是一個卡塔蘭立體[2],由24個、36條邊和14個頂點組成[1],其中24面為24個全等等腰三角形,是一種二十四面體,其對偶多面體截角八面體[3][4]。在四角化立方體的14個頂點中,有6個頂點是4個等腰三角形的公共頂點,對應的頂角是四面角;另外8個頂點是6個等腰三角形的公共頂點,對應的頂角是六面角[5][6]

此外四角化立方體可以視為在正方體的每個面上加入適當錐高的正四角錐的結果[7],其加入的正四角錐錐高不能高過原本的正方體表面到其外接球的距離,為四分之一倍的立方體邊長[8],若超過則會變成菱形十二面體或星形的四角化立方體。

此外,立方體、八面體和星形八面體都可以以頂點共用的方式,內接在四角化立方體內[8]

體積與表面積

若四角化立方體的最短的邊長為a,則其表面積A體積V[8]

表面積
體積為

若其對偶多面體的截角正八面體邊長為a,則對應的四角化立方體之體積V[5]

體積為

面的組成

四角化立方體由24個全等等腰三角形組成[9]

組成四角化立方體的等腰三角形的2個底角為arccos約為48.19°[10],由三角形內角關係可知頂角約為83.62°[11][10],邊長比為1:1:[12][10]

頂點坐標

若一個四角化立方體對應的對偶多面體邊長為單位長(對應的四角化立方體最短邊長為單位)且幾何中心位於原點,則其頂點坐標為[13]

對稱性

四角化立方體具有Td, [3,3] (*332)的四面體群對稱性,其24個等腰三角形代表四面體對稱的24個基本域。 在球面上,四角化立方體可以透過6個球面大圓來構建。相同的結構也可以透過將立方體在每個正方形面上以正方形的幾何中心為基準將正方形分成四個三角形[14]、或透過將正四面體在每個三角形面上以正三角形的頂點、邊中點和幾何中心為基準將正三角形分成6個三角形來看出。

四角化立方體可以投影到球面上,形成球面多面體[15]。在球極平面投影中,四角化立方體的稜可以在平面上形成6個圓或中心徑向線,每個圓或中心徑向線皆代表四面體群對稱性的鏡射線。這6個圓可以分成3組每兩兩一對的正交圓,這三組正交圓,每組在球面上皆可以視為1個正四面形。

球極平面投影 透視投影 施莱格尔投影
[4] [3] [2] 歪斜

正交投影

四角化立方體有三種高對稱性的正交投影,分別為兩種在頂點上的正交投影以及一種在稜上中點的正交投影。 後兩者的對偶圖其對稱性對應於B2和A2考克斯特平面[16][17]

正交投影
投影對稱性 [2] [4] [6]
四角化立方體
截角八面體

使用

四角化立方體骰子

礦物學中,這種形狀又稱為四六面體[18](英語:tetrahexahedron[19][20]),部分的礦石可以結晶成這種形狀[21][22],例如部分的钙铁榴石[23],以及能在部分的銅和氟的結晶系統中被觀測到。

此外,亦有部份24個面的多面體骰子被設計為四角化立方體的外型[24]

相關多面體與鑲嵌

四角化立方體可以經由八面體的對偶多面體——立方體透過四角化變換構造,即將立方體每個面貼上正四角錐來獲得[7]。其他也是由正八面體或其對偶多面體透過康威變換得到的多面體有:

半正正八面体家族多面体
对称性: [4,3], (*432) [4,3]+, (432) [1+,4,3], (*332) [4,3+], (3*2)
node_1 4 node 3 node  node_1 4 node_1 3 node  node 4 node_1 3 node  node 4 node_1 3 node_1  node 4 node 3 node_1  node_1 4 node 3 node_1  node_1 4 node_1 3 node_1  node_h 4 node_h 3 node_h  node_h 4 node 3 node  node 4 node_h 3 node_h 
{4,3} t0,1{4,3} t1{4,3} t1,2{4,3} {3,4} t0,2{4,3} t0,1,2{4,3} s{4,3} h{4,3} h1,2{4,3}
半正多面体的对偶
node_f1 4 node 3 node  node_f1 4 node_f1 3 node  node 4 node_f1 3 node  node 4 node_f1 3 node_f1  node 4 node 3 node_f1  node_f1 4 node 3 node_f1  node_f1 4 node_f1 3 node_f1  node_fh 4 node_fh 3 node_fh  node_fh 4 node 3 node  node 4 node_fh 3 node_fh 
V4.4.4 V3.8.8 V3.4.3.4 V4.6.6 V3.3.3.3 V3.4.4.4 V4.6.8 V3.3.3.3.4 V3.3.3 V3.3.3.3.3

四角化立方體是由等腰三角形組成[10],且對偶多面體由正方形正六邊形組成。同樣由等腰三角形組成,且對偶多面體由正多邊形與正六邊形組成的多面體或鑲嵌圖包括:

*n32變異對稱性 n.6.6 的截角鑲嵌:
對稱性
*n42
[n,3]
球面鑲嵌 歐氏鑲嵌 緊湊雙曲 仿緊雙曲 非緊雙曲
*232
[2,3]
*332
[3,3]
*432
[4,3]
*532
[5,3]
*632
[6,3]
*732
[7,3]
*832
[8,3]...
*32
[,3]
[12i,3] [9i,3] [6i,3]
截角鑲嵌
頂點 2.6.6 3.6.6 4.6.6 5.6.6 6.6.6 7.6.6 8.6.6 .6.6 12i.6.6 9i.6.6 6i.6.6
n角化
鑲嵌
V2.6.6 V3.6.6 V4.6.6 V5.6.6 V6.6.6 V7.6.6 V8.6.6 V.6.6 V12i.6.6 V9i.6.6 V6i.6.6

對偶複合體

四角化立方體的對偶複合體,為四角化立方體和截角八面體組合成的複合圖形,稱為複合截角八面體四角化立方體。其共有38個面、72條邊和38個頂點,其尤拉示性數為4,虧格為-1[25]

四角化立方體圖

四角化立方體圖
分布4 (6個)
6 (8個)
顶点14
36
半径3[26]
直径3[26]
围长3
色数3[26]
色指数6
對偶圖截角八面體圖
属性平面, 可積

圖論的數學領域中,與四角化立方體相關的圖為四角化立方體圖(Disdyakis Dodecahedral Graph),是四角化立方體之邊與頂點的圖[26],是一個阿基米德對偶圖[27]

性質

四角化立方體圖有36條邊和14個頂點,其中為4的頂點有6個、度為6的頂點有8個。[26]

特徵多項式[26]

參見

參考文獻

  1. Williams, Robert. . Dover Publications, Inc. 1979. ISBN 0-486-23729-X. (Section 3-9)
  2. Wenninger, Magnus, , Cambridge University Press, 1983, ISBN 978-0-521-54325-5, MR 0730208, doi:10.1017/CBO9780511569371 (The thirteen semiregular convex polyhedra and their duals, Page 14, Tetrakishexahedron)
  3. The Symmetries of Things 2008, John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, ISBN 978-1-56881-220-5 (Chapter 21, Naming the Archimedean and Catalan polyhedra and tilings, page 284, Tetrakis hexahedron)
  1. . Honeylocust Media Systems, polyhedra.org. 2006 [2008-08-28]. (原始内容存档于2008-08-28).
  2. Koca, Mehmet and Koca, Nazife Ozdes and Koc, Ramazan. . International Journal of Geometric Methods in Modern Physics (World Scientific). 2014, 11 (04): 1450031.
  3. Eric W. Weisstein. . 密西根州立大學. 1999-05-26 [2019-09-01]. (原始内容存档于2013-06-21).
  4. Holden, A. . Dover Publications. 1971: p. 55.
  5. . dmccooey.com. [2019-09-01]. (原始内容存档于2018-05-01).
  6. Eugène Catalan. . Journal de l'École polytechnique. 1865, 41: pp.1–71, +7 plates.
  7. Ruhnow, M. . Crystal Research and Technology (Wiley Online Library). 2012, 47 (4): 369––376.
  8. Weisstein, Eric W. (编). . at MathWorld--A Wolfram Web Resource. Wolfram Research, Inc. (英语).
  9. Ugo Adriano Graziotti, , , U. A. G., University of San Francisco, 1962 [2019-09-05], (原始内容存档于2021-08-23)
  10. . fillygons.ch. [2019-09-03]. (原始内容存档于2019-09-01).
  11. Pugh, A. . The Dome series. University of California Press: 43. 1976 [2019-09-03]. ISBN 9780520030565. LCCN 74027297. (原始内容存档于2019-06-29).
  12. Weisstein, E.W. . CRC Press. 2002: 2732-2733. ISBN 9781420035223.
  13. . dmccooey.com. [2019-09-01]. (原始内容存档于2018-01-24).
  14. W. von Kühnel, , Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 57 (1) (Springer), 1987, 57 (1): 7
  15. Rodrigues, Fernando Alves and Temporão, Guilherme and von der Weid, Jean Pierre. . Journal of Communication and Information Systems. 2018, 33 (1).
  16. 約翰·史坦布里奇. . math.lsa.umich.edu. [2019-09-05]. (原始内容存档于2018-02-10).
  17. 約翰·史坦布里奇. . math.lsa.umich.edu. [2019-09-05]. (原始内容存档于2017-08-21).
  18. . 國家教育研究院. [2019-09-01]. (原始内容存档于2019-09-01).
  19. Correns, C. W. . Berlin: Springer-Verlag. 1949: p. 41.
  20. Berry, L. G. and Mason, B. Mineralogy: Concepts, Descriptions, Determinations. San Francisco, CA: W. H. Freeman, 1959., p. 127
  21. . (PDF). [2019-09-01]. (原始内容存档 (PDF)于2019-09-01).
  22. Tappert, R. and Tappert, M.C. . Springer Berlin Heidelberg. 2011: p.26. ISBN 9783642125720. LCCN 2011924333.
  23. . . . 2010年4月 (日语).
  24. Kybos, Alea. (PDF). [7 October 2012]. (原始内容 (PDF)存档于2012-05-28).
  25. . bulatov.org. [2019-09-06]. (原始内容存档于2017-12-06).
  26. Weisstein, Eric W. (编). . at MathWorld--A Wolfram Web Resource. Wolfram Research, Inc. (英语).
  27. Weisstein, Eric W. (编). . at MathWorld--A Wolfram Web Resource. Wolfram Research, Inc. (英语).

外部連結

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.